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Molecular-dynamics simulation of amorphous alloys: 
11. Self-diffusion 

E H Brandt 
Max-Planck-Institut fur Metallforschung, Institute fur Physik, D-7000 Stuttgart 80. 
Federal Republic of Germany 

Received 10 October 1988, in final form 25 April 1989 

Abstract. The self-diffusion of atoms in amorphous two-component alloys is simulated by 
molecular dynamics. Plots of the atomic paths show that at high temperatures T the atoms 
perform random walks and at low Tthey oscillate and eventually jump to new positions. The 
distribution of the atomic displacements is Gaussian with a mean square increasing at large 
times tasA + 6DtwhereA originates fromosciilations and D defines the diffusion coefficient. 
In all amorphous systems and at the relatively high temperatures investigated D( T )  exhibits 
Arrhenius behaviour over at least three decades. The corresponding pre-exponential factors 
Do and the activation energies E are listed for various atomic interactions and masses. In all 
cases D o  is 2 to 10 times d( U/m)'12 and E is 1.5 to 3 times U (d  = position and U = depth of 
the minimum in the interaction potential between the majority atoms of mass m). In a given 
alloy the E values of small and large atoms are nearly equal and Do is larger for small and 
light atoms. Only minority atoms of very small radius exhibit markedly larger E than the 
majority atoms. 

1. Introduction 

In a previous paper (part I,  Brandt 1989) amorphous arrangements of atoms are inves- 
tigated which were fully relaxed by simulated annealing. The system consists of 
N A  s 1000 majority atoms and NB s NA/5 minority atoms of radii r A  and r B  and masses 
mA and mB. We use periodic boundary conditions and isotropic pair interactions between 
the atoms @AA(Y), @AB(Y) and @BB(r) ,  which we choose as simple parabolae defined by 
equation (1) of part I. @AA and @AB exhibit a repulsive core and an attractive tail and 
are characterised by the depths (a,,, UAB) and positions (dAA = 2rA, d A B  = TA + YB) of 
their minima and by their ranges or cut-off radii ( R A A ,  R A B ) .  The interaction between 
the minority atoms @BB (with parameters a B B ,  d B B ,  and R B B )  is chosen to be merely 
repulsive to provide good separation between these atoms. 

During the relaxation of the atomic positions the volume was kept constant or was 
relaxed (pressure-free relaxation). Relaxation under pressure leads to very homo- 
geneous amorphous systems when merely repulsive smooth potentials are used (Brandt 
1984,1985, Brandt and Kronmuller 1987). 

In the present paper (part 11) the self-diffusion of the atoms in these amorphous 
systems is investigated with the aim of getting some insight into possible diffusion 
mechanisms as discussed, for example, by Kronmuller and Frank (1989). We use the 
same molecular-dynamics method as for the relaxation by annealing in part I but now 
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the system runs freely, i.e. the temperature is not controlled. During the time evolution 
of the system the potential energy U,,, and the kinetic energy U,,, both fluctuate slightly. 
The constancy of the total energy U,,, = U,,, + U,,, serves as a test for the accuracy of 
the time integration of Newton’s equation for each atom for which we use the velocity 
form of the Verlet algorithm (Swope et a1 1982). The temperature Tis defined by the 
time average (Uki,,) = 2 kTN (equipartition principle, N = N A  + NB). 

The temperature-dependent diffusion coefficient is calculated in the following way. 
We start with the system far from static equilibrium corresponding to a high temperature. 
Between subsequent runs the temperature is reduced by stopping the atoms (this roughly 
reduces T to T/2) or by reducing their velocity by a constant factor. After this slowing 
down the atoms start to move again. After 50 to 100 time steps dynamic equilibrium is 
reached again. Now we put t = 0 and store the atomic positions as references. From then 
on the mean-square atomic displacement at large t increases as 

d 2  = ( ( A r j ) 2 ) 1  = A + 6Dt + fluctuations. (1) 
Here the constant term originates from oscillating atoms and the linear term from three- 
dimensional diffusive motion. Equation (1) defines the diffusivity D. Partial diffusivities 
DA and DB are defined by averaging in (1) over the A-type or B-type atoms, respectively. 

As energy unit we chose U,, as length unit dAA and as mass unit mA. U, = aAA is the 
depth and dAA = 2rA the position of the minimum in the interaction of the majority 
atoms of mass mA. From these units follow the units for time and diffusion coefficient: 

t ^ =  2rA(mA/UA)’I2 

d = 2rA ( UA /m A) 
(2) 

Dimensionless measures for the temperature are kT/UA or, preferably, the ratio T of 
the average kinetic energy and the equilibrium potential energy U:,, = -NUB. Here 
U, is the binding energy per atom in our model system. 

For atoms interacting only with their 12 nearest neighbours (e.g. in the FCC lattice) 
one has U, = 6UA and for our amorphous systems U, = 6UA. We may thus define a 
reduced temperature 

= k T / 4 u ~  r_. (Ukln)/NUB. (3) 
The paper proceeds as follows. After this introduction, atomic paths are presented 

in 9 2 in order to visualise the atomic motion at various temperatures. The diffusive type 
of this motion is discussed in 9 3. Arrhenius plots of the diffusivities are given in 9 4. 
Quantitative results for the temperature-dependent diffusivities are compiled in table 1 
and discussed in 9 5 for model systems with various composition and atomic interaction. 
Finally, the results are summarised and discussed in 9 6. 

2. Diffusion paths 

A major problem in plotting the motion of atoms is to find an appropriate presentation. 
While part I dealt with the visualisation of three-dimensional static arrangements of 
atoms, now an additional variable, time, has to be presented. The following plots show 
the paths of individual atoms but not their surroundings, which, of course, are also in 
motion. This presentation is a first step towards a more instructive (but possibly confus- 
ing) simultaneous presentation of the paths of several neighbouring atoms that move in 
a correlated way. 
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Figure 1. The atomic pathsin an amorphous system at four reduced temperatures F ,  equation 
(3). The position of one atom at equidistant time intervals is marked by small octagons, the 
diameter of which is a measure of the coordinate perpendicular to the plane of the figure. 
The length scale is given in units of the closest-packed atomic distance, d.  See text. 

Each of the following figures shows the two longest atomic paths of a given computer 
run. Most of the remaining atoms moved considerably less far. Every second time step 
we store all atomic positions and at the end of this run pick out those atoms which have 
moved farthest in thexy-plane. For better resolution each path {x(t), ~ ( t ) }  is then plotted 
to full scale; the length scales of the paths are indicated at the right and left borders of 
the plots (d = dAA) .  The third coordinate z ( t )  is visualised by the size of the plotted 
octagons. 

Figure 1 shows atomic paths for the same amorphous system at various temperatures 
T = 0.89 to T = 0.014. This system consists of NA = 200 atoms of one type (NB = 0) with 
interaction range RAA = 1.3. The individual diffusion paths of the small and large atoms 
in alloys or in larger systems look similar to the paths depicted here and are thus not 
shown in this paper. Roughly 12 time intervals (the distance of the octagons) of duration 
2At = 0.012 correspond to one oscillation period t = 12 X 2At = 0.144 as can be seen 
at T = 0.014. Each path has a total duration of 261 x 2At = 3.1 = 22t  (f'> 0.014) or 
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Figure 2. Atomic paths of two atoms in 
an FCC lattice at very low temperature. 
The paths in our amorphous models 
look very similar. See text. 

151 x 2At = 1.8 - 132 ( p  = 0.014). Thetotaldisplacement (separationofthepathends) 
rangesfroms/d=7.3at  T=0 .89 tos /d=0 .16a t  p=0 .14 .  

At higher temperatures close to the melting point ( T  = 0.89) the atomic paths are 
much longer than the atomic spacing (-d) and look like random walks. When the 
temperatureis lowered ( p  = 0.16) the atoms spend more time at energetically favourable 
positions roughly one atomic spacing apart. Here they orbit and oscillate irregularly and 
then move or jump with nearly constant speed to the next position. The number of 
oscillations performed at these sites increases with decreasing temperature. At  still lower 
temperature ( T  = 0.014) the paths resemble rather irregular Lissajous figures with 
eventual jumps by less than one atomic spacing. 

At very low temperatures the Lissajous figures become more regular and look similar 
to those in crystalline systems. This is shown in figure 2 for an ideal FCC lattice of 108 
atoms at T = 0.0067 for RA, = 1.3 (2At = 0,008,202 plotted points, total time interval 
202 x 2At = 1.62, amplitude of oscillations =0.04d and period t = 18 X 2At = 0.144 as 
in figure 1 at T = 0.144). At  that low temperature atomic jumps occur, and diffusive 
motion can be detected only after a prohibitively long simulation time or in extremely 
large systems. 

For the computation of diffusivities at low temperatures, therefore, direct molecular 
dynamics cannot be used since it describes too small systems at too short physical time. 
Small diffusivities may be calculated by less direct simulation methods based on some 
model. For example, Lanson et a1 (1985) describe self-diffusion as a random walk of 
interstitial atoms through an amorphous structure, which they investigate by a Monte 
Carlo technique. 
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Figure 3. Mean-square displacements aA 
and aB of the atoms in an alloy ARflB2fl with 
the B-type atoms half as large as the A- 
type atoms; see text. Also shown are the 
ratios a/*, which tend to the constant 
values d D A  and d D B  at large times. The 
abscissa gives the number of time steps. 
High reduced temperature 7= = 0.165. 

0 1000 
t /d  t 

2000 Figure 4. As figure 3 but for lower reduced 
temperature = 0.069. 

3. Diffusive motion 

Figures 3 and 4 show the mean-square atomic displacements 6: and 6; of large (A- 
type) and small (B-type) atoms as a function of time t ( N A  = 800, NB = 200, dAB = 0.75, 

in figure 6(6) and D1 in table 1). The linear increase indicates the diffusive character of 
the motion; cf. equation (1). Also shown are the ratios 6,/(6t)l12 and 6,/(6t)’12, which 
tend to the constant values d D A  and d D B  at larger times. In figure 3 the temperature 
is high, T = 0.165; 62, and 6; are almost proportional to t since the contributions of 
both the atomic oscillations and the statistical fluctuations are very small. At the end of 
this run (after 800 time steps of length At  = 0.004, tmax = 3.84) the large (small) atoms 
have moved an average distance of aA = 1.82 (6, = 3.15) atomic spacings d .  

In figure 4 the temperature is lower, T = 0.069, and 6 i  and 6; fluctuate randomly 
about their ideal, slightly curved values. After 2000 time steps of length At = 0.006 
(t,,, = 12) the atoms on average have moved only small distances aA = 0.52 and aB = 
1.25 atomic spacings. The sums of the squared displacements, NA6i = 216 and 
NB6$ = 312, however, are still sufficiently large to yield significant diffusivities (stat- 
istical error = lo% in this case; cf. the data points with the lowest D value in figure 6(b ) ) .  

aAB = 1, RAB = 1.25, RAA = 1.4, dsB = 1, aBB 0.5, R B B  = 1.4, mB = 0.25; cf. the runs 
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Figure 5. The distribution p ( s )  of the 
atomic displacements; see text. Curve A, 
i'= 0.46, 6 / d  = 1.65; curve B, i' = 0.20, 
6 / d  = 0.56. The broken curves (prac- 
tically coincident with the full curves) are 
Gaussians of the same width asp(s). 

The diffusivities in figures 6 , 7  and 8 and in table 1 below are obtained by fitting straight 
lines to 6 i ( t )  and 6 i ( t )  in the interval 0.4 d t/t,,, S 1. 

A further indication of the diffusive motion is the distribution p ( s )  of the atomic 
displacements. We define p ( s )  as the probability that s x ,  sy or s, equals s or -s. This 
choice reduces the statistical fluctuation of p ( s )  by a factor of d 6  as compared to the 
probability to find, e.g., s = s,. Figure 5 shows two such distributions for a system of 
NA = 1OOOatoms ( N B  = 0, RA, = 1.3) at two temperatures i! = 0.46and i! = 0.20. After 
500 time steps of length d t  = 0.006 the root-mean-square diffusion path along a given 
direction is 6 = (s2)lI2 = 1.65d and 6 = 0.56d. The broken curves are Gaussians exp( -s2/ 
2d2) of the same width as p ( s ) .  The depicted p ( s )  (smoothened by convolution with a 
Gaussian of width <6) practically coincide with the Gaussians at both temperatures. 
This is expected for diffusive motion. 

4. Temperature dependence of diffusion coefficients 

Arrhenius plots of the diffusivities of the A-type and B-type atoms are presented in 
figures 6 to 8 for systems with N A  = 800 and NB = 200. The corresponding pre-exponen- 
tial factors D l  and Dog and the activation energies E A  and E B  of ideal Arrhenius 
behaviour, 

obtained by fitting straight lines to the data points in figures 6 to 8 and other such plots, 
are presented in table 1. Figure 6 compiles the results of two separate runs (with different 
starting configurations) each for six temperatures, and this for three systems. The 
systems in figures 6(a) and (c) differ only by one parameter from that in figure 6(b) which 

mB = 0.25, volume = constant (cf. run D1 in table 1). This system exhibits DB = 2-70, 
at all temperatures depicted here ( E A  = EB). 

In figure 6(a) the interaction +AB is stronger by a factor of 2 (uAB = 2, cf. run D2 in 
table 1). As expected, this decreases the diffusivity of the (now stronger bound) B-type 
atoms, DB = 1.4DA at all temperatures. In figure 6(c) the B-type atoms are four times 
heavier (mB = 1, cf, , run D4 in table 1). This again reduces Dg but now the reduction is 
larger at higher temperatures (EB < EA). 

exhibits RAA = 1.4, dAB = 0.75, RA, 1.25, aAB = 1, dgg = 1, RBB = 1.4, aBB = 0.5, 
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Figure 6.  Arrhenius plots of the self-diffusion coefficients for three amorphous model alloys 
differing by only one parameter; see text. Note the shift of the origins of the abscissae and 
the rather small scatter of data points resulting from two equivalent runs. Within this 
statistical error the partial diffusivities D A  and DB fall on straight lines in the depicted 
temperature interval. The unit D is defined in equation (2). 

In the three systems shown in figure 6 the diffusivities obey almost ideal Arrhenius 
laws over the depicted temperature range (1 : 7) and over almost three orders of mag- 
nitude of D. Furthermore, we find nearly the same slope for both DA and Dg. Only very 
small B-type atoms exhibit clearly smaller activation energy. This is shown in figure 7 
for rg / rA  = 0.2 (run B3 in table 1). In this case one has E B / E A  = 0.57; cf. the discussion 
below of table 1. A case of large minority atoms is shown in figure 8 for rg/rA = 1.6 (run 
E6 in table 1). As expected the larger atoms diffuse more slowly. The slopes of the 
Arrhenius lines are nearly equal, E B / E A  = 1.11. Figure 8 compiles the results of three 
independent runs with different starting configurations. 

In the case shown in figure 8 the simulation was extended to very high temperautres, 
F =  1.73, where we expect the system to be liquid. At such high temperatures, with 
increasing Tthe diffusivities increase faster than expected from the extrapolation of the 
Arrhenius line. In particular one may have D( T )  9 Do. The deviation from an Arrhenius 
behaviour occurs when kTbecomes comparable to or larger than the activation energies 
E A  or EB. It probably indicates a change in the diffusion mechanism. A similar deviation, 
with D ( T )  - T 2  at larger T ,  was observed in liquid tin and liquid tin-indium alloys in 
Spacelab experiments (Frohberg 1988, Frohberg et a1 1987). There, the enhanced 
diffusivity was explained by the presence of vortex-like modes of atomic motion excited 
at high temperatures and contributing to the self-diffusion coefficient in the liquid metal. 
Very large systems, are required to simulate this type of diffusion quantitatively on a 
computer. For a review of self-diffusion in liquid metals and alloys, see Nachtrieb (1976). 

We thus cannot at present give an explanation for the deviation from the Arrhenius 
line in figure 8. Possibly this indicates the existence of a spectrum of (effective) activation 
energies, with the large values determining the self-diffusion at large temperatures. Also 
we cannot exclude the possibility that, if we could extend our simulation to lower 
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Figure 7. Arrhenius plots of the self-diffusion 
coefficients in an amorphous alloy with very small 
minority atoms. In the depicted temperature 
interval both D, and DB fall on straight lines but 
now with clearly different slope. 
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Figure 8. Arrhenius plot for an amorphous alloy 
with large minority atoms. Note the deviation 
from the Arrhenius line at very high tempera- 
tures; see text. 

temperatures, the Arrhenius plots would exhibit a curvature because the effective 
activation energy differs at low temperatures. The computational effort required to 
check this would be larger by at least two orders of magnitude than that of the present 
paper. The present simulations show that for a wide variety of amorphous systems D( T )  
exhibits Arrhenius behaviour with constant activation energy over at least three orders 
of magnitude in D and a temperature range of 1 : 7, which probably begins above the 
melting temperature. At present we do not know the melting temperature of our systems 
but intend to get more information on this by measuring the viscosity in future computer 
runs, e.g., by the method used by Chen et a1 (1988). 

5. Quantitative results 

Table 1 compiles the activation energies EA and EB (in units U,) and the pre-exponential 
factors D.!, and Di (in units 6,  equation (2)) of various amorphous systems. Each entry 
is obtained by fitting an Arrhenius line to the diffusivities resulting from at least six 
computer runs at various temperatures. The longest run (lowest temperature) typically 
needed a CPU time of one hour on a BASF 778 computer. All presented results are 
reproducible and independent of the (random) starting configuration of atoms. 

All the systems in table 1 contain N = 1000 atoms. Case A contains only one type of 
atom (NB = 0); cases B, C and D contain NB = 200 smaller atoms; and case E contains 
NB = 200 larger atoms. The table lists as input parameters the range R A A ,  width dAB, 
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Table 1. 

A1 
A2 
A3 

B1 
B2 
B3 
B4 
B5 

c 1  
c 2  
c 3  
c4 
c 5  
C6 

D1 
D2 
D3 
D4 

E1 
E2 
E3 
E4 
E5 
E6 

1.3 
1.4 
1.4 

1.4 
1.4 
1.4 
1.4 
1.4 

1.3 
1.3 
1.3 
1.3 
1.3 
1.3 

1.4 
1.4 
1.4 
1.4 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

0.6 0.25 0.5 
0.6 0.5 0.5 
0.6 1 0.5 
0.6 2 0.5 
0.6 1 0.5 

0.75 1 0.5 
0.75 2 0.5 
0.75 2 0.5 
0.75 2 0.5 
0.75 1 0.5 
0.75 1 0.5 

0.75 1 0.5 
0.75 2 0.5 
0.75 2 0.5 
0.75 1 0.5 

1.3 1 1 
1.3 2 1 
1.3 2 2 
1.3 1 0.5 
1.3 1 2 
1.3 1 2 

- C 

C - 
- r 

0.25 c 
0.25 c 
0.25 c 
0.25 c 
1 C 

0.25 c 
0.25 c 
0.25 r 
1 C 

0.25 r 
4 r  

0.25 c 
0.25 c 
0.25 r 
1 c  

1 r 
1 r 
1 r 
1 r 
2 r  
1 r 

3.28 - 
2.20 - 
2.61 - 

1.82 0.58 
2.00 0.74 
2.00 1.14 
2.24 1.92 
1.92 2.28 

2.10 1.92 
2.56 2.37 
3.46 3.00 
2.27 2.25 
3.00 2.46 
3.31 3.30 

1.90 1.70 
2.13 2.10 
2.45 2.32 
1.92 1.47 

2.19 2.20 
3.36 3.86 
4.19 4.50 
1.70 1.72 
2.20 2.20 
1.84 2.05 

12.18 - 
1.80 - 
7.62 - 

2.23 3.53 
2.83 3.13 
2.36 4.06 
2.89 3.90 
2.14 3.13 

6.82 14.9 
1.43 3.13 
5.47 5.49 
0.85 1.46 
5.70 9.39 
4.06 4.95 

2.32 6.17 
2.56 3.67 
2.23 3.13 
2.23 3.19 

4.95 3.53 
6.30 4.22 

11.9 7.10 
2.66 2.01 
5.47 3.06 
3.19 2.23 

and amplitudes aAB and aBB of the interaction potentials (cf. equation (1) of part I) and 
the mass mB of the minority atoms. The remaining input parameters are dAA = aAA = 

1,3(1.4,1.8).Thetypesofthepotentialsare(cf. equation(1)ofpartI) @AA = = 
G2 (but @AB = G3 when dAB = 0.6), and @BB = The table also indicates whether the 
volume was kept constant (c) or relaxed (r). 

We discuss the results of table 1 by comparing pairs of runs which differ only in one 
parameter. From the one-component systems A1/A2 one sees that the softer potential 
(RA* = 1.4 in A2) yields smaller Do = D I  but also smaller E = EA than the harder 
potential (RA* = 1.3 in Al ) .  The Arrhenius lines thus cross at a (rather high) tem- 
perature kT -- 0.56UA. When the volume is allowed to relax (case A3) the activation 
energy increases as compared to the cases with constant volume (kept at the closest- 
packed value, case A2). This may be explained by the increase of the volume at higher 
T ,  which reduces the atomic interaction and thus enhances D ( T ) .  Within the accuracy 
of our simulation this expansion effect is fitted by an enhanced effective activation 
energy. 

The systems C1 to D4 contain small minority atoms with dAB = 0.75 (rB/rA = 0.5, cf. 
figure 6) with harder (RA* = 1.3, C1 to C6) and softer (RA* = 1.4, D1 to D4) inter- 

WZA= l a n d , f o r R ~ ~ =  1.3(lS4,1.5):RAB= 1.15(1.25,1.8),dBB= 1 ( 1 , 1 . 2 ) a n d R ~ ~ =  
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actions. As expected, the activation energy of the smaller minority atoms is always 
smaller, EB =s EA. However, the difference is quite small although the minority atoms 
are twice as small as the majority atoms. Since the prefactors are also almost equal, 
DB b DA, we have the interesting result that in the considered amorphous alloys of 
composition A80B20 the small minority atoms do not diffuse considerably faster than the 
larger majority atoms. Only very small atoms diffuse markedly faster; this is shown in 

Finally, the systems El  to E6 in table 1 contain large minority atoms with dAB = 1.3 
( Y B / Y A  = 1.6, cf. figure 8). In this case one always finds DB(T) < DA(T) .  Again, the 
activation energies are almost equal, EB b EA. As expected, EB/EA increases when the 
potentials @ A B  or @ B B  are chosen stronger ( u A B  > 1 or uBB > 1, cases E2, E3 and E6). 
When the mass mB is increased (cf. ES/E6) one gets again E, = EA possibly since heavy 
large minority atoms hinder the diffusion of the majority atoms. 

In general we find that softer potentials (RAA = 1.4) yield smaller activation energies 
EA and EB than harder potentials (RAA = 1.3); cf. the pairs Al/A2, Cl /Dl ,  C2/D2 and 
C3/D3. E, is increased and Di decreased and thus DB reduced at all temperatures, 
when either the mass mB or the interaction u A B  is increased or when the volume is allowed 
to relax. 

the CaSeS B1 to B5 for dAB = 0.6 ( Y B / T A  = 0.2, Cf .  figure 7). 

6. Summary and discussion 

In molecular-dynamics simulations of amorphous alloys at high temperatures the atoms 
perform random walks with no clearly visible structure. At lower temperatures the 
atomsoscillate and from time to time jump to new positions. At very low temperatures 
they perform irregular Lissajous figures and jumps cannot be observed within our limited 
time of computation. The motion of atoms is diffusive if monitored over a sufficiently 
large time: the path lengths have a Gaussian distribution, and the mean-square atomic 
displacement increases linearly in time with the slope 6 0  defining the self-diffusivity D 
of the atoms. The diffusivities obtained for various model alloys exhibit a temperature 
dependence of the Arrhenius type with constant activation energies over three decades 
of D. 

The diffusion coefficients and activation energies obtained may be expressed in 
physical units, e.g. by interpreting the A-type atoms as Fe atoms. This choice gives mA = 
mFe = 9.27 x kg and dAA = 2 r A  = dFe = 2.47 x 10-l' m, the atomic distance in BCC 
iron. The choice of the potential depth U, is more problematic. It is known that large 
values result when the potential is fitted to measured binding energies, and smaller 
values when the potential is constructed to reproduce the elastic constants of the metal. 
The physical reason for this difference is that the full interaction of atoms in a metal is 
not well described by a simple central interaction between mainly the nearest neighbours. 
In metals a large contribution to the cohesive energy comes from the electron gas, which 
may be accounted for approximately by fitting a density-dependent interaction potential 
(Finnis and Sinclair 1984, Daw and Baskes 1983,1984). 

The situation here is similar to that in the flux-line lattice in type-I1 superconductors. 
If one assumes that a central interaction between pairs of flux lines yields both their 
binding energy (obtainable from measured magnetisation curves) and the elastic con- 
stants of the flux-line lattice (which play an essential role in flux-line pinning; Brandt 
and Essmann 1987) one obtains the correct bulk modulus but a completely wrong 
shear modulus, which increases monotonically with increasing applied magnetic field B 
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(Labusch 1967). The correct shear modulus of the flux-line lattice, however, vanishes 
as (Bc2 - B)' when B approaches the upper critical field Bc2 of the superconductor 
(Labusch 1969, Brandt 1969,1986). Both in atomic and flux-line lattices the interaction 
is to a good approximation composed of a structure-dependent part and a part depending 
only on the local density of atoms or flux lines. 

If we take the potential constructed by Chang and Graham (1966) for BCC iron we 
get UA = 0.19 eV and dAA = 2.684 x lo-'' m and for the reduced units, equation ( 2 ) ,  I 
= 4.68 X m2 s-'. Similar values result from the potentials 
of Johnson (1966) and of Seeger and Tichy (1989). A simulation of 2000 time steps 
(figure 4) thus describes only about s real time of the system. The temperature scale 
of figures 6 to 8 follows from UA/k = 2205 K; the explicit temperature interval in which 
self-diffusion was simulated is 0.6 < UA/kT G 4 corresponding to 550 K < T s 3600 K. 
This means that at the highest temperature of the simulation our model system was 
liquid and at the lowest temperature of -280 "C it was an amorphous solid below the 
temperature range where annealing leads to crystallisation. 

The main result of the present simulation is that, for all the amorphous systems we 
have investigated, the pre-exponential factors and activation energies (table 1) of self- 
diffusion are of theorder of our reducedunits, equation (2) .  In particular, the diffusivities 
of small, large, light or heavy atoms in a given alloy are of the same order of magnitude, 
with small differences as expected (light and small atoms diffuse faster). We typically 
find (table 1) EA = E,  = 2.5UA -- 0.5 eV (if U ,  = 0.2 eV) and D i  -- D! = 4D = 
6 x m2 s-', 

These findings are in marked contrast to the experimental results of Horvath et a1 
(1988) discussed by Kronmuller and Frank (1989). These radio-tracer experiments in 
amorphous Fe-Zr alloys of various compositions yield diffusivities of the Fe and Zr 
atoms which, for the same alloy and temperature, differ by several orders of magnitude, 
and pre-exponential factors Do which scatter over 14 orders of magnitude. The reason 
for this discrepancy between the experimental and the simulated diffusivities is not clear 
to us at present. On the other hand, these radio-tracer experiments (with pre-annealing) 
are excellent and reproducible. On the other hand, our molecular-dynamics simulations 
are straightforward, amere integration of the classical equations of motion of the atoms, 
starting with random positions. Within this classical treatment the thermodynamics of 
our (small) system follows from simple averages over time and over the atoms. 
Additional restrictions, such as, for example, keeping the total kinetic energy (the 
temperature) constant by continuously rescaling the velocities, or the introduction of 
some local dissipation of energy would mean that we treat a specific model, which has 
to be justified by physical arguments. 

In the present molecular-dynamics simulations the only assumption that has a model 
character is that of central potentials acting between pairs of atoms. It is conceivable 
that at least part of the discrepancy is due to this simplification. Note that the improved 
potentials by Finnis and Sinclair (1984) or Daw and Baskes (1983,1984) are still central 
pair potentials, which, however, depend on the local atomic density or on the con- 
figuration of neighbouring atoms. In our simulations we tried various central potentials 
and found that with simple two-body interaction the atoms diffuse 'collectively', i.e. that 
both types of atoms rearrange simultaneously and, therefore, exhibit similar diffusion 
coefficients. 

In contrast, HorvAth eta1 (1988) find a much larger diffusivity of the (slightly smaller) 
Fe atomsin Fe-Zr alloys. For example, in amorphous Fe9,Zr9 at T = 600 K they measure 
D,, 1 x m2 s-l and Dzr 2: 1 x m2 s-l = DFe. This observation means 

s and D = 1.54 X 
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that the Fe atoms diffuse through an essentially immobile arrangement of Zr  atoms. 
Since the radius of Zr  atoms exceeds the radius of Fe atoms by only a few per cent, the 
differing diffusivities indicate that the type of interaction between the Zr  atoms may be 
qualitatively different from that of the Fe atoms with Fe or Zr. The Zr atoms are possibly 
bound together more rigidly by an anisotropic potential which favours a certain bond 
angle or configuration number. Such a potential depends on the positions of at least 
three atoms. Its numerical implication would thus increase the computational effort 
considerably. 
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